
Lecture Notes in Computer Science 1 

Multi Dimensional Color Histograms for Segmentation of 
Wounds in Images  

Marina Kolesnik1, Ales Fexa  

Fraunhofer Institute for Media Communication, Schloss Birlinghoven, D-53754 
Sankt-Augustin, Germany 

Abstract. The work investigates the use of multi dimensional histograms for 
segmentation of images of chronic wounds. We employ a Support Vector Machine 
(SVM) classifier for automatic extraction of wound region from an image. We show 
that the SVM classifier can generalize well on the difficult wound segmentation 
problem using only 3-D dimensional color histograms. We also show that color 
histograms of higher dimensions provide a better cue for robust separation of classes 
in the feature space. A key condition for the successful segmentation is an efficient 
sampling of multi-dimensional histograms. We propose a multi-dimensional 
histogram sampling technique for generation of input feature vectors for the SVM 
classifier. We compare the performance of the multi-dimensional histogram sampling 
with several existing techniques for quantization of 3-D color space. Our experimental 
results indicate that different sampling techniques used for the generation of input 
feature vectors may increase the performance of wound segmentation by about 25%.  

1. Introduction 

Chronic skin wounds affect many people and take a long time to heal. Systematic 
measurement of the physical dimensions of a chronic wound is an excellent way to record 
the progress of healing. Normal practice of wound care includes weekly check-up of a 
patient at which an image of wound is acquired. A clinician draws a contour around the 
wound and assesses its size by comparing contours in subsequent images. This is a time 
consuming and subjective process. The work here attempts at developing an automatic 
procedure for automatic segmentation of wound region in wound images. 
Even for restricted instances of wound image segmentation, the use of simple features is 
not sufficient for reliable differentiation of image pixels onto different classes. An efficient 
separation of classes can be achieved if features are derived from various histograms 
counted in a local neighborhood of image pixels [1]. Further improvement is obtained if 
multiple local histograms are linked together thus resulting into a single multi-dimensional 
histogram. Feature space generated by a sampling of such multi-dimensional histogram 
provides most efficient local description of image pixels.  
Several methods for the histogram sampling have been suggested in the literature. Chapelle 
et al. [2] downsize the original color range with 255 bins down to 16 bins. This reduces the 
size of any 3-dimensional color histogram to 163=4096. Experiments with a smaller 
number of bins have produced worse image classification, whereas a larger number of bins 
have not been tested on the ground of limited computational resources. Pietikäinen et al. [3] 
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apply a more advanced approach by dividing each color dimension into N bins with an 
equal number of entrees. They confirm that best classification accuracy is obtained using 
the sampling into 16x16x16 bins. This kind of sampling was found to be efficient for 
wound segmentation [4]. However, both methods sampled each color dimension 
independently, which cannot be fully justified because it does not take into account the 
inherent dependency of different color dimensions in natural objects. 
In this work we employ 3-D color histograms to generate a set of features, which are then 
used as input to the Support Vector Machine Classifier (SVM) [5], [6]. We show that a 
single histogram of higher dimensions provides a better description of pixels of one class 
than a collection of several 1-D histograms. Also, the role of different sampling techniques 
cannot be underestimated. Our experiments indicate that different sampling techniques 
make a profound impact on the quality of wound segmentation.  
The paper is organized in six sections. We start by introducing the multi-dimensional 
Histogram Sampling (Section 2). We proceed by describing SVMlight implementation 
classifier and generation of input feature vectors. (Section 3). Next, we look at performance 
of the SVM classifier by conducting experiments when using a single 3-D color histogram 
versus three 1-D histograms, and different sampling techniques (Section 4). Discussion of 
segmentation results concludes the paper (Section 5). 

2. Histogram Sampling 

We distinguish between the 3-D color space and a higher dimensional feature space, which 
consists of feature vectors attributed to image pixels. The Histogram Sampling as 
introduced [3] uses a normalized 1-D histogram M of an image, or an averaged histogram 
of a set of images, and samples it into a number of L bins, each one constituting an equal 
fraction of pixels 1/L: 
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for all bins l=1,…,L. Note that such a sampling automatically gives a denser bin 
distribution for those histogram parts with larger number of elements thus providing an 
optimal sampling of histogram entries into bins.  

Let H be a local histogram H computed in a neighborhood of pixel (i,j). Next, H is 
sampled into the same set of bins, L. A number of histogram elements falling into each bin 
defines one feature per bin. Thus, elements falling into first L-1 bins (the last bin is 
excluded as dependent on the previous ones) define L-1 features, which, when taken 
together, form a point in the (L-1)-dimensional feature space. The point coordinates define 
a feature vector associated with the pixel (i,j). Fig. 1a shows an example of the Histogram 
Sampling. 

An extension of Histogram Sampling for the case of multi dimensional histogram is 
built upon recursive sampling. Consider 3-D color space in which M being a 3-D image 
histogram. Let M1 be a selected image histogram of one color dimension. Next, M1 is being 
sampled into L equal sized bins. Elements El of M1, falling into each bin, l, form a set of 
entries for the computation of 1-D histogram of next color dimension. Let histogram M11 be 
generated. Next, M11 is sampled into L equal sized bins, too. The process of sampling is 
repeated recursively for all bins and three dimensions of the color space. It generates a total 
number of L3 bins which gives rise to a set of L3-1 features. These features form a feature 
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vector attributed to a central pixel of window used for the computation of local histogram. 
The multi-dimensional Histogram Sampling can be easily extended to a general case of N-
dimensional histogram in which case a set of LN-1 features would be generated. Fig. 1b 
illustrates the Histogram Sampling in case of  two dimensions. 
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Figure 1. a) Histogram Sampling into four bins. The image histogram (solid line) is sampled into 
four equal sized bins. The local histogram (dashed line) is sampled into same four bins. The 
Histogram Sampling defines three features indicating a fraction of entries falling into three first bins: 
43%; 31% and 25% in our example. b) Schematic illustration of the multi-dimensional Histogram 
Sampling in case of two dimensions. Blue and Green channels are used for the generation of 15 
color-based features. 

3. SVM-based wound segmentation in the color feature space 

SVM is an approach for supervised classification of data into two classes [6]. In this work 
we use SVMlight - implementation of the SVM classifier available for research application 
at http://svmlight.joachims.org/ [7]. SVM classification is performed in two stages. The 
aim of the first, training stage, is to find an optimal separating hyperplane which divides 
the set of test examples into two classes. Note that each test example has to bear a label of 
either class. During the second, classification stage, each input point is attributed a label 
according to the side this point appears with respect to the hyperplane. A more detailed 
account of SVM’s is out of the scope of this paper and here we will only discuss those 
aspects of the Training and Classification Stage, which are specific for wound 
segmentation.  

Input to the SVMlight is a set of feature vectors attributed to selected image pixels. We 
use manually segmented images of wounds to compose a training set of feature vectors 
attributed to pixels of wound and non-wound class. Our experiments suggest that a 
balanced contribution of feature vectors from two classes improves the quality of 
classification. We therefore select an approximately equal number of evenly distributed 
pixels from across the wound and non-wound regions for the generation of input for the 
training stage.  

SVMlight offers three optional kernels such as linear, polynomial and radial one. In our 
experiments the radial kernel performed best followed by the polynomial and linear one. 
These results are consistent with earlier experiments on image classification [8]. 

The choice of feature space is crucial for the performance of the SVM classifier. In a 
“good” feature space, input elements originating from either wound or skin class, would 
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form two volume clusters, which are widely separated from each other and easy to classify. 
In spite of the fact, that the color histogram technique is a very simple method, it has shown 
good results for image indexing and segmentation [1]. Below we investigate the impact of 
two factors on the performance of the SVM classifier: 1) the use of three 1-D color 
histograms versus a single 3-D color histogram for the generation of input feature vectors 
and 2) different quantization techniques employed in the histogram sampling.  

4.1 Computation of feature vectors 

A training set of input feature vectors for the case of N wound images and 3-D color 
histogram is obtained as follows. For every image, about 2000 evenly distributed pixels are 
selected from the wound region and approximately the same number from outside of the 
wound region. This gives rise to a set of about 4000 pixels for each image. Pixels from 
image background are counted as belonging to “not a wound class”. Pixels from a 
boundary region around the wound of about 12 pixels wide are not selected so as to 
exclude a confusing mixed wound/skin region. A 3-D color histogram is computed for 
every image using the selected pixels. A 3-D average histogram is generated by summing 
up all the 3-D color histograms and dividing the sum by the number of images, N. This 
average histogram is sampled into 64 bins using the multi-dimensional Histogram 
Sampling.  

The ordering of color dimensions in the RGB space used for the recursive sampling 
depends on the level of differentiation between wound and skin provided by these 
dimensions: color dimensions with higher differentiation are sampled first. This resulted 
into the blue/green/ red-ordering of dimensions for the recursive sampling.  
Computation of feature vectors for SVM segmentation utilizes the bins resulted from the 
Histogram Sampling of the average histogram. Computation of feature vectors for each 
pixel of an image to be segmented takes the following steps: 1) Generation of 3-D local 
histogram in a local window of about 75x75 pixels; 2) Sampling the local histogram into 
64 bins resulted from the sampling of the average histogram; 3) Composing a 63-element 
feature vector out of entries of the local histogram falling into the first 63 bins. 

4. Experiments and results 

We present several experimental trials each one testing a specific way of computation of 
input feature vectors. Six images of different wound types were used for the training of the 
SVM in each experimental trial. Each of these images was then segmented using the 
trained SVM. As required by the training, the images were manually segmented onto a 
wound and “non wound” region.  

The quality of segmentation in each trial was measured by counting an average rate of 
erroneously classified pixels as follows. Let Wm be a number of wound pixels and let Sm be 
a number of “non-wound” pixels in a manually classified image. Similarly, let Wc and Sc be 
a number of pixels classified as wound and “non-wound” in a computer-segmented image, 
respectively. Error rate for misclassified wound pixels is given by the normalized 
intersection of the manual wound segment and the computer-generated non-wound 
segment: 
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where  denotes the intersection of two sets. Similarly, the error rate for misclassified 
“non-wound” pixels is given by the normalized intersection of the manually defined non-
wound segment and the computer-generated wound segment: 

I

mcmskin SWSE /)( I=  

Full classification error is then given by the sum of the above error rates:  

2/)( skinwound EEError +=  

5.1 Single multi-dimensional histogram versus multiple 1-D histograms 

A series of experiments tested the quality of segmentation when sampling 1) three 1-D 
histograms and 2) a single 3-D color histogram. In the first experimental trial each 1-D 
histogram was sampled into 22 bins generating 63 input features per pixel. In the second 
trial each dimension of the 3-D color histogram was sampled into 4 bins giving rise to 63 
features. The generated features were firstly used for the training of the SVM classifier on 
six wound images and, after that, for the segmentation of each one of these six images, 
independently. All other segmentation parameters used by the SVM classifier were kept 
identical in all experiments. 

Image 3 x 1-D 3-D 

1 
2 
3 
4 
5 
6 

0.63 
1.74 
1.25 
2.41 
1.86 
0.61 

0.36 
1.46 
1.38 
1.93 
1.56 
0.47 

Average 1.42 1.19 

Table 1.  The error percentile, Error, of erroneously classified pixels resulted from the segmentation 
of six images. Input feature vectors are generated by the independent sampling of 1-D histograms 
(column 3 x 1-D), and the sampling of 3-D color histograms (column 3-D). 

Segmentation results in Table 1 display a convincing advantage in the performance of 
the SVM classifier for the case of 3-D color histogram over a corresponding collection of 
three 1-D histograms. We extent this conclusion to a more general statement: a better 
performance of multi-dimensional histogram can be explained by the fact that the sampling 
in the 3-D color space indeed exploits the inherent dependency of color dimensions usually 
shown by complex natural objects. This is especially true for the human skin. Light 
remitted from skin is a complete spectrum. Consequently, the 3-D color histogram is a 
gross approximation of the true remitted light. The composition of the spectrum for the skin 
depends on the mixture of scatters and absorbers in the skin, each one of these affecting 
each primary dimension of the spectrum. This results into correlation of R, G and B parts 
of the RGB histogram, which is exploited by the multi-dimensional Histogram Sampling. 
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5.2 Comparison of different sampling techniques 

In order to perform an independent testing of the multi-dimensional Histogram Sampling 
technique, we have conducted a series of experiments in which other quantization methods 
were involved. Five sampling techniques have been tested: 
1. Independent Sampling (IS) performs independent sampling of each color histogram into 
N bins with an equal number of histogram entrees [4].  
2. Learning Vector Quantization (LVQ) performs the quantization of unlabeled data 
vectors into a smaller set of codebook vectors. Each data vector is then represented by its 
nearest codebook vector. An initial set of random codebook vectors is trained so as to 
minimize the error of misclassification of data vectors. We use an optimized LVQ1 training 
algorithm [10] for the quantization of 3-D histogram. 
3. Vector Quantizer Design (LBG-VQ) [9] is a lossy data compression method based on 
the principle of block coding. The reason of applying the LBG-VQ for the sampling of 3-D 
histogram is similar to the motivation of any image compression algorithm, namely, the 
need to downsize an original dataset by extracting most important information while 
leaving out the rest. We use the LBG-VQ algorithm for the coding of wound images. Code 
vectors characterizing image pixels are used for generation of input features: each image 
pixel is attributed a feature vector that gives a fraction of occurrences of coding vectors in a 
local window. 63 coding vectors used by the LVG-VQ compression give rise to a same 
number of 63 features composing the elements of a feature vector. 
4. Random Density Estimation (RDE) employs the Voronoi Diagram which, in our case, is 
a partition of color space into Voronoi cells, each of which consists of elements closer to 
one particular object than to any others. The advantage of RDE is that the shape of Voronoi 
cells varies with the density of elements of the 3-D color histogram. Because most of the 
histogram elements are concentrated within an ellipsoid of revolution around the axis 
R=G=B, one would expect that flexibly shaped Voronoi cells could “better” partition the 
area within the ellipsoid than the square-shaped bins of the Histogram Sampling. The 
following iterative procedure was used: 1) Select N (N=250) random color vectors out of 
the elements of 3-D color histogram; 2) Construct the Voronoi Diagram using the selected 
color vectors; 3) Compute a number of histogram elements falling into each Voronoi cell; 
4) Delete a color vector with the smallest number of histogram elements contained in its 
Voronoi cell; 5) Update the Voronoi Diagram down to N-1 cells; Step 4 and Step 5 were 
repeated until a required number of cells N (in our case N=64) is obtained. 
5. Histogram Sampling (HS) is the multi-dimensional Histogram Sampling technique 
(Section 3) applied to the 3-D color histogram. 

IS LVQ LBQ-VQ RDE HS 
1.42 7.86 1.35 1.12 1.19 

Table 2. Average segmentation error for the different sampling techniques. The average error is 
computed over six wound images.  

Table 2 shows how average error of segmentation of six wound images is affected by 
the use of the above sampling techniques. As evidenced by the error values, the RDE 
sampling provides the lowest rate of misclassified pixels. This can be explained by the fact 
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that the Histogram Sampling based on the Voronoi Diagram provides an optimal 
partitioning of elements of the 3-D color histogram.  

5.3 Examples of wound segmentation 

The capability of SVM classifier to segment a wound was tested with numerous images. 
Here we show the result of segmentation of three test images from the sequence of six ones 
used in the previous experiments. Input feature vectors were obtained by the sampling of 3-
D color histograms. Examples of segmentation in Fig. 2 show that the SVM-classifier 
produces a fairly reliable segmentation of wound tissue despite of large variations in 
brightness of skin and quite a different appearance of wounds.  

    

Figure 2. Three examples of wound segmentation. 63 input features were computed locally in the 
window of 95 pixels. The SVM classifier employed the polynomial kernel. Corresponding error rates 
for misclassified pixels are given in Table 1, images 1, 4 and 6, column 3-D.  

5. Conclusion and future work 

The Histogram Sampling technique generates the efficient set of feature vectors, which, 
when inputted into the SVM-classifier, enable the reliable segmentation of wound region in 
images. The generalized multi-dimensional Histogram Sampling of 3-D color histograms 
further improves the discrimination of feature vectors.  

Processing time needed for the SVM training depends linearly on the number of input 
feature vectors (i.e. of the number of training images), but also, on their “quality” in terms 
of how well these can be separated into two classes. For about 2000 feature vectors from 
the wound class and the same amount from outside the wound region, the observed training 
time is of the order of 2 minutes (Pentium, 1000 MHz). If, however, the training feature 
vectors are not widely separated in the feature space, the convergence of searching for the 
support vector may become problematic.  

Our experimental results indicate that the sampling of 3-D color histogram generates 
input features with a better discrimination than those ones obtained by the independent 
sampling of 1-D histograms: the quality of wound segmentation in our experiments was 
improved by as much as 20%-30%. It is therefore always advantageous to employ the 
single 3-D color histogram for the generation of input feature vectors used by the SVM for 
wound segmentation. Experiments with different quantization techniques have lead to an 
unexpected result. Although the Learning Vector Quantization technique provide a “better” 
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partitioning of multi-dimensional feature space in a sense that cell distribution is related to 
a density of space elements, the quality of wound segmentation is significantly worse. Also 
surprisingly, the rate of misclassified pixels resulted from the Voronoi Diagram sampling is 
comparable with the error rate when the multi-dimensional Histogram Sampling is used.  

More words are to be said with regard to 3-D color histograms. Despite of their 
simplicity, 3-D color histograms provide an efficient cue for the description of different 
image objects, which are in our case, of course, wounds. Color histograms are invariant to 
translation and rotation and change only slowly under change of angle of view and scale. 
As a result, Histogram Sampling generates image features, which are fairly invariant to 
small variations in brightness and scale. The multi-dimensional Histogram Sampling is 
therefore provides best cumulative measure characterizing image objects locally. Note that 
the 3-D color histogram can be easily extended to higher dimensions by adding other 
discreet distributions related, for instance, to texture. Applying the Histogram Sampling to 
the extended multi-dimensional histogram would certainly generate highly efficient local 
description of image pixels.  
A less optimistic conclusion of this work is this one: however robust and good the SVM 
segmentation is, it cannot produce a wound contour which is as fine as the manual one 
drawn by a clinician. It seems that there should be an additional and independent 
mechanism that complements region segmentation on a final stage of contour generation. 
The aim of our future research will be aimed at the fusion of two processing methods -the 
SVM segmentation and wound contour detection.  

6. References 

1. Swain, M.J., Ballard, D.H.: Color Indexing. International Journal of Computer Vision, 7:1 (1991) 
11-32. 

2. Chapelle, O., Haffner, P., and Vapnik, V.: SVMs for histogram-based image classification ", IEEE 
Trans. on Neural Networks, 9 (1999)

3. Pietikäinen, O., Nieminen, S., Marszalec, E., and Ojala T: Accurate Color Discrimination with 
Classification based on Feature Distributions. Proc. of the Inter. Conference on Pattern 
Recognition (ICPR’96), (1996) 833-838. 

4. Kolesnik, M., Fexa, A.: Segmentation of wounds in the combined color-texture feature space. 
Proc. of SPIE Medical Imaging 2004: Image Processing, 16-19 Feb. 2004, San Diego, CA, 549-
556.  

5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995) 
6. Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998) 
7. Joachims, T.: Making large-Scale SVM Learning Practical. In Advances in Kernel Methods - 

Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (eds.), MIT Press, (1999) 
8. Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niogi, P., Poggio, T., Vapnik, V.: Comparing 

support vector machines with gaussian kernels to radial basis function classifiers. A.I. Memo. No. 
1599, MIT (1996) 

9. Linde, Y., Buzo, A., Gray, R., M.: An Algorithm for Vector Quantizer Design, IEEE Transaction 
on Communications, pp. 702-710, January (1980) 

10. Kohonen, T., Kangas, J., Laaksonen, J., Torkola, K.: LVQ_PAK: A program package for the 
correct application of Learning Vector Quantization algorithms, Proc. of the Inter. Conference on 
Neural Networks, Baltimore, (1992) 1725-1730. 


