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ABSTRACT 

This paper investigates the robustness of automatic 
wound segmentation. The work builds upon an automatic 
segmentation procedure by the Support Vector Machine 
(SVM) - classifier presented in [8],[9]. Here we extend 
the procedure by incorporating textural features and the 
deformable snake adjustment to refine SVM-generated 
wound boundary. The robustness of SVM-based 
segmentation is tested against different feature spaces 
using a long sample of training images featuring a broad 
variety of wounds’ appearance. Recommendations drawn 
from these experiments provide a useful guideline for the 
development of a software support system for the visual 
monitoring of chronic wounds in wound care units.  

 

1. INTRODUCTION 

Automatic detection of wound surface area in images is a 
desirable tool for clinicians involved in chronic wound 
care. Although simple in its formulation, the problem 
proved to be challenging for a computer. Neither 
algorithmic approaches, employing the existing color 
image processing techniques, nor attempts to develop a 
dedicated image acquisition system, .could not yet 
produce robust solution.  

The list of image processing techniques probed for wound 
segmentation comprises a broad bunch of algorithms 
starting with relatively simple edge-based grey-scale 
segmentation and going the whole way up to 
sophisticated statistical analysis of color and multi-
spectral images. Edge-based algorithms build upon the 
existing edge detection algorithms, c.f. Canny, [2] and use 
the detected wound boarders for segmentation of wound 
region [1]. Despite of optimistically low magnitudes of 
erroneous segmentation of up to 7% reported in [2], it is 
doubtful that the edge-based methods could be reliable in 
general as images featuring wound and skin typically 
exhibit numerous edge segments in the vicinity of the true 
wound boundary. This high amount of false edges may 
also be confusing for the deformable snake algorithm, 
applied for wound segmentation in [5], [6]. With no a 
priory input helping to discriminate between the false 

edge segments and the wound boarder, it is difficult to 
draw an initial contour required by the snake algorithm. 
Another family of wound segmentation approaches 
exploits regional features based on either color or texture, 
or their combination. Final decision on the segmentation 
is then taken using various classification techniques such 
as conditional thresholding [3], [4], neural networks [5], 
case-based reasoning [7], and support vector machines 
[8], [11]. 

Another outstanding aspect related to the development of 
new wound segmentation techniques is the lack of an 
accepted method for objective assessment of how 
efficient any new segmentation technique is. Accuracy of 
automatic segmentation is typically compared against 
manual one in terms of bias (offset of the mean of 
multiple measurements) and precision (repeatability or 
variation) [6] or by computing percentile rate of 
misclassified pixels [9]. Different segmentation 
techniques have never been a subject to a direct 
comparison among each other in terms of acquisition 
conditions, image quality, tolerance against different 
wound and skin appearances, processing time, or a level 
of required human intervention.  

This work continues the development of the SVM-based 
wound segmentation algorithm introduced in [8]. Input 
features to the SVM in this algorithm are generated by a 
recursive sampling of multi-dimensional color 
histograms. The efficiency of different sampling 
techniques for wound segmentation was investigated in 
[9], where it was shown that the recursive sampling of 3-
D color histograms employed in feature generation 
produces better segmentation results as compared to the 
sampling of one-dimensional histograms. In the work 
here we extend the multi-dimensional sampling approach 
used for the generation of color features towards 
incorporation of two textural features (Section 2). We 
evaluate the efficiency of wound segmentation in a series 
of experiments with a rather large training sample of 
wound images (Section 3). We furthermore refine the 
SVM-generated wound contour through a multiscale 
snake adjustment algorithm (Section 4). Conclusions 
summarize our experience in automatic wound 
segmentation and give recommendations for a semi-
automatic support system for wound surface evaluation 



 

from images.  

2. FEATURE GENERATION 

2.1 Color features 

The right choice of feature space is crucial to the SVM-
classifier for seamless separation of two classes. The 
reader is referred to [9] for a detailed account on the 
sampling of 3-D color histograms used for generation of 
input feature vectors for the SVM-based segmentation.  

2.2 Textural features 

Although drawn from image contrast variations, textural 
features have the advantage of being entirely independent 
from color features. Given a collection of textural 
features, which separates well on wound and non-wound 
region, would greatly increase the robustness of SVM.-
based segmentation.  

Investigation across a wide variety of different wound 
images has identified two textural features that exhibit 
robust separation of the wound surface area from 
background. These are a Local Contrast variation (LC) 
and a Local Binary Pattern (LBP). Both textural features 
have been computed for grayscale images and in a local 
window as follows.  

Local contrast variation records the difference between 
an average value of pixels above the central value and an 
average value of pixels below the central value: 

( ) ( )NPNPLC +−=  

where P is a local average value of all pixels whose gray 
values is greater or equal than that of the gray value of 
central pixel, and N is a complementary average gray 
value of remaining pixels whose brightness is less than 
the brightness in the center. In case N is equal to zero, 0.8 
(the average contrast) has been assigned as the contrast 
value LC. The size of the local window employed is about 
9x9 pixels. 

789

167

256

111

01

001

163264

8128

421

input thresholded weights

LBP=11110001
LBP = 1+16+32+64+128 = 241

789

167

256

111

01

001

163264

8128

421

input thresholded weights

LBP=11110001
LBP = 1+16+32+64+128 = 241  

Fig.1. Computation of the LBP value. 

The principle of the Local Binary Pattern is depicted in 
the Fig. 1. The LBP-operator thresholds a 3x3 
neighborhood by the value of the central pixel followed 
by the summation of the resulting binary pattern 
multiplied by corresponding binary weights. The 

advantage of the LBP is its invariance against monotonic 
brightness variations across image spatial domain. We use 
a generalized version of the LBP-operator called LBP16 
riu2 [10], which is computed in a 5x5 neighborhood using 
interpolated brightness values and is rotation invariant.  

Given the fact that the sampling of 3-D color histograms 
generates robust separation of color features, we extent 
the histogram sampling approach by incorporating above 
textural features. First, a 2D texture histogram using the 
LC and LBP16 

riu2 textural features is generated. Next, the 
multidimensional histogram sampling is applied for the 
sampling of the LC-dimension into 4 equal-size bins and 
the LBP-dimension into eighteen bins. Due to uneven 
distribution of 18 discreet LBP values, - about 30% of 
pixels typically exhibit the largest possible value of 17, 
the LBP sampling was carried out manually into the 
following set of 4 bins: {{0, 1, 2, 3}, {4, 5, 6, 7, 8, 9, 10, 
11}, {12, 13, 14, 15, 16}, {17}}.  

3. SVM-BASED WOUND SEGMENTATION  

3.1 SVM training 

A total of 50 wound images representing different wound 
types have been employed for the training of the SVM 
classifier. A wound region in each of these images has 
been manually segmented. Three training runs have been 
carried out, each one employing one of the following 
feature set: 1) color features only, 2) textural features 
only, and 3) the combination of color and textural 
features. The training images were captured by a 
dedicated image acquisition device consisting of the 
Olympus C-2500L camera surrounded by a ring of LED 
lights, which provided homogeneous illumination of a 
wound surface. The training wound images were of 
different sizes cropped from original color images of 
1280x960 pixels in size.   

3.2 Quality evaluation 

In our experiments, we use the trained SVM for the 
segmentation of new wound images, i.e. the ones not 
employed in the training. Each SVM generated wound 
segment has been compared against the corresponding 
manually drawn wound segment by reckoning the number 
of misclassified pixels. The quality of SVM segmentation 
is measured as an average number of erroneously 
classified pixels from wound region and that ones from 
background (see [9] for details). 

3.3 Segmentation results 

Three segmentation trials have been carried out using the 
three SVM classifiers trained in the different feature 
spaces as indicated in 3.1. Each SVM classifier has been 
employed for the segmentation of 23 new wound images. 
These images were captured by the same acquisition 
device as the training images. 



 

Table 1 illustrates the quality of segmentation in the three 
trials. The table gives the average magnitude of 
misclassified pixels in the segmented sequence of  the 23 
images as well as the encountered minimal and maximal 
error magnitudes.  

 Color Texture Color&Text. 
Average 6,56 22,16 5,80 

Max. 23,77 52,12 30,45 
Min. 0,66 1,38 0,47 

Table 1. Percentile error magnitudes resulting from the 
SVM segmentation in the color, texture and the combined 
color & texture feature space.  

 

Fig. 2. Wound image overlaid with the SVM-generated 
contour. Error magnitude is 0,47%. 

 

Fig. 3. Wound image overlaid with the SVM-generated 
contour. Error magnitude is 30,45%. 

 

Fig. 4. Wound image overlaid with the SVM-generated 
contour. Error magnitude is 1,25%. 

As one can see from the error magnitudes, the average 
robustness of segmentation increases in case of the 
combined color and texture feature space. This is despite 

of the fact that high error magnitudes are observed if only 
the textural features are employed. One notes, however, 
that the quality of segmentation varies dramatically with 
the error magnitudes ranging from as low as 0,47% and 
up to 30,45%. These two extreme segmentations are 
illustrated in Fig. 2 and Fig.3, respectively. The figures 
show wound images together with the computer-
generated wound contours. The SVM segmentation in 
Fig.3 basically fails. This is most likely due to 
misleadingly yellow color of wound’s matter, which also 
obscures the textural features. Wound bandage ads to the 
confusion of textural features too. As the wound image in 
Fig. 3 proved to be particularly difficult for the SVM 
segmentation, we have conducted an additional 
investigation of this case. We have trained the SVM using 
this single wound image and segmented this image by the 
trained SVM classifier. The result in Fig. 4 shows a 
considerable improvement in the quality of segmentation.  

4. WOUND CONTOUR REFINEMENT  

One certain conclusion can be drawn based on the above 
experiments: the SVM-based segmentation cannot 
generate as fine wound contour, as a human would do. 
Even in case of robust segmentation with low error rate, 
the SVM-generated contour does not follow a wound 
boundary exactly. To compensate this drawback, we have 
tested the capability of snake adjustment approach [12] 
for refining the SVM-generated contour.  

The snake algorithm adjusts a given initial contour to the 
underlying intensity gradient of the wound image. It is 
straightforward to use the SVM-generated contour as the 
initial one in the snake adjustment algorithm. The 
problem however is that a typical wound image exhibits 
numerous edges with sufficiently large intensity gradient 
near the true wound boundary. In the presence of these 
“false” edges, the snake contour adjustment attracted 
towards these edges becomes unstable. One possible 
solution stabilizing the contour adjustment is a multiscale 
modification of the snake adjustment algorithm using 
image pyramid.  

The multiscale snake adjustment begins the processing on 
a high level of the Gaussian pyramid with coarse 
resolution and gradually proceeds towards the pyramid 
level of original size. First, the Gaussian pyramid of 
image gradient is generated. Next, the initial contour is 
computed by projecting the SVM-generated wound 
contour onto a starting pyramid level of smallest size. The 
snake adjustment is then applied on the starting pyramid 
level generating a coarsely adjusted contour. Finally, the 
adjusted contour is projected onto the next pyramid level 
and used as the initial contour in the next round of 
hierarchical snake adjustment. This “coarse-to-fine” 
strategy is much more likely to converge on a true wound 
contour. Fig. 5 illustrates the refined wound contour using 
the multiscale snake adjustment. 



 

 

Fig. 5. An example of wound image with the overlaid 
contour resulted from the SVM segmentation (left) and 
with the refined contour using the multiscale snake 
adjustment (right). 

5. CONCLUSIONS 

We have presented the SVM wound segmentation 
procedure followed by the refinement of the SVM-
generated wound contour using the deformable snake 
adjustment. The robustness of the SVM segmentation has 
been tested with the sample of 23 wound images not 
employed in the training of the SVM classifier. All 
images have been captured by the same acquisition 
device. The magnitude of segmentation error is 5.8% on 
average, although the maximum error recorded is 30,45% 
for the texture & color feature space and 23,77% for color 
features. It is proper to ask which magnitude of the 
segmentation error is perceived as acceptable by a human 
observer. Since the segmented wound area is not uniquely 
associated with the error, i.e., many different 
segmentations can produce the same error magnitude, this 
very same error magnitude invokes different visual 
assessment of the quality of segmentation. This 
outstanding issue requires an additional investigation 
before a robust method of comparing multiple 
segmentations can be suggested. Our observations 
indicate that segmentation errors ranging within 5% and 
7% are perceived as being of acceptable quality, whereas 
error magnitudes below 3% count as being very good.    

Our experiments suggest that neither choice of the feature 
space is capable of making the SVM segmentation stable 
for any new wound image. The combination of color and 
texture features reduces the average magnitude of the 
segmentation error as compared to the use of only color 
features. Still, it does not ensure the generated segment to 
be of acceptable quality for any incoming wound image. 
The followed snake refinement step is only successful if 
the initial SVM contour lies in the vicinity of the true 
wound boundary. Consequently, the current segmentation 
procedure may fail and it therefore will not be useful to 
the clinician in its fully automatic form.  

Of course, there still remains a question whether a much 
larger training sample than that one used in our 
experiment would increase the robustness of the SVM 
segmentation so as it will guarantee that maximum 
segmentation error is below the indicated quality margin 
of about 6%. Currently however, we believe that 

semiautomatic procedures (c.f. [3], [13]) have an 
advantage over any fully automatic segmentation because 
the user would be offered an option to correct the 
automatic wound contour if this fails at some locations. In 
a semiautomatic system, the user would control the final 
segmentation decision thus excluding the possibility of 
total segmentation failure. For instance, a semiautomatic 
system based on the SVM segmentation may have an 
option to retrain the SVM classifier interactively based on 
user’s input. It is sensible to train the SVM classifier with 
an image sample of a single patient featuring the 
development of particular wound. Our experiments show 
that the SVM segmentation of any new image of the same 
wound is highly reliable with the error magnitude below 
2%.   
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